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metals and alloys due to proximity of the Fermi level to 
singular points of band structure 
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I V Kurchatov Institute of Atomic Energy. Mosmw 123182, USSR 
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Abstract. Wc investig3te stngularities of phonon spectrs and inharmonic effects nn metals 
ducrotheproximtt) ofthcFcrm~lcvelf~rosrn~ular poin:s~~~ntheeltctrondens~t) ofntatrs 
.V ( fJ  As an cxample. we con5idcr the c31e of the \ an How singdam), when at small q = 
f F  - L, thesin%ularparrofN(rpJ \aricsas q:‘. $%here = I q S ( 3 q )  and 8(x)areroat 
x <  Oandunit) 311 >O. Wechon thatcontnb~lionstophunon irequenc:csw,thjtarenon- 
a n a l ) t i c i n ~ a r e p r o p o n i o n a l r o q ~ ‘ a t k > k , ~ n d t o q , ’ a t k <  k,,uherek.-q,-’isrome 
char3ctcrtst~c value of the uavenumber k. Within the modcl wth a weal, pseuoopotentia.. 
U .  an riplicit expression i s  eivcn for the singdar parr of the dbnami mdrrix for al l  not small 
k > k,- ( u q . j ’  Inthermod)namicr,low-frr.quenc) phonondlrpcriionatk -k.resdt,in 
anomalos tcmper3turc dependences at .ow T -  T, = T,(uq,) ’.where To is  the Dco!e 
remperirure. At T >  T,non-anal!ticconrribulionr to the therm31 expansioncoefficicnrrarc 
proport.onal to q::, uhilcin thetcmp~rar~rederivat~vcioltheclastrcconslantsandolthc 
opticphononfr~quencieauith/: =Otheyprowaas VI ?.Th:rcsul tsarccomp~red~ri ththe 
available c x p e r m ” d  data. 

1. Introduction 

Anomalies of kinetic and thermodynamic properties of metals connected with the 
proximity of the Fermi level E~ to singular points E< in the electron density of states 
N(E) (to be called for brevity state-density singularity (SDS) effects) have been widely 
discussed in the literature; see e.g. [l, 21. The point E< may be the Van Hove singularity 
point in N ( E ) ,  connected with the electronic topological transition (ER) [3], and may 
not formally be a non-analyticity point of N ( E )  but correspond to the region of its sharp 
variation, e.g. a narrow peak of &‘(E), which is characteristic of many transition-metal 
alloys [4,5]. Recent theoretical and experimental studies show that, in a number of 
significant characteristics, such as the thermopower [&9], shear constants [l, 2, lo], 
thermal expansion [l, 111, microhardness [12], structural stability [lo, 131, etc, the 
SDS effects may be pronounced and strong. As an example, in figure 1 we show the 
concentration anomaly in the value of dc,/dTin Nb-MO alloysobserved by de Camargo 
eta1 [l], which they attributed to the SDS effects. 

Anomalies in phonon spectra wk in the vicinity of the E n  were discussed by Dagens 
[14]. He showed that, if the singular contribution to N ( + )  at small 7 = ( E ~  - E , ) / E ~  had 
a ‘one-sided‘ form Ns(sF) = Allyz characteristic of the  where qi = 5 70=, 8+ = 

0953-8984/91/111389 t 20 $03.50 0 1991 IOP Publishing L id  1389 



1390 V G Vaks and A V Trejifoo 

e 
~~~ ~~ ~ 

'\ .-.-.-._.- 
-1 

O 0. L 0.8 
x 

Figure 1 .  The concentration dependence of the temperature derivative n&) = dcM,/dT 
in the Nb,.,Mo, alloys at T = 300K [ I ] .  

e( 2 q) and O(x)  is unity at x > 0 and zero at x < 0). then at q + 0 all the frequencies wk 
displayed 'one-sided' singularities of the form w;  =A?#. He also discussed 
singularities of Kohn anomalies in wk near the ETT and concluded that they result 
in unusual termsfrK in averages over the phonon spectrum f = (wg) having the form 
frK = A1q13'2(1 - et) and being non-zero on the side of the ETT where N ( q )  is regular. 

The consideration of Dagens [I41 was phenomenological, without attempting to 
estimate microscopically the scale and form of the anomalies. Therefore. it is desirable 
to verify and specify it using some microscopic model, e.g. that with a weak pseudo- 
potential. Moreover. Dagens [14] treated mainly phonons with not small wavevectors 
k ,  while at small k the  singularities with respect to q in wk(q) get stronger (which 
was mentioned in his paper. too). This must result in some peculiarities in the low- 
temperature dependences of thermodynamic characteristics near the ETT. Finally, the 
s~sanomaliesincharacteristicsofthe anharmoniceffects.suchas the thermalexpansion 
coefficientsai(T) and the temperature dcrivativesofelasticconstantsdcJdT, ofphonon 
frequencies dw,/dT. etc. can be of considerable interest. There are a number of exper- 
imental indications of the importance of the SDS effects in these characteristics (see e.g. 
[l, l l ] ) ,  but theoretically, they have apparently not yet been discussed. 

The present paper deals with the above-mentioned problems. For definiteness, in 
the same way as in [2]. we discuss mainly the ~ 'mcase ,  though all the qualitative results 
are applicable to the general case of a sharp change of N(E) in the vicinity of a certain 
E,. In section 2 we consider singularities of phonon spectra wk for different values of the 
wavenumber k. In section 3 we explicitly calculate the non-analytic part of the dynamic 
matrix in the model of interaction of electrons with only one face of the Brillouin zone 
(BZ) 1151, whichisknown to describe exactlyall thesingularitiesconnectedwith the ETT. 
We show. in particular, that the mentioned unusualfSK term suggested by Dagens [14] 
is absent in this model as well as in other cases when the ETT occurs in the vicinity of the 
BZ symmetry point. In section 4 we consider manifestations of the discussed SDS effects 
in thermodynamicand anharmoniccharacteristics, in particular in the thermal expansion 
coefficient a, and the temperature derivativesof the elastic constant q = dq/dTand of 
the optical phonon frequency xp = dw,/dT, In section 5 we illustrate the scale and 
character of the discussed SDS effects with the model calculations of the concentration 
dependences of p,(x) ,  JC,,(X) and z p ( x )  for the disordered alloys Li,-Jvi& and 
Cd,-,M& having the ETT at certain values x = x,. The experimental results for micro- 
hardness and hardness in these alloys are also discussed. The main conclusions are 
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summarized in section 6. Some of the results of this work were reported earlier in a short 
communication [16]. 

2. Singularities in the dynamic matrix near the electronic topological transition 

As in [14], we proceed from the general expression for the dynamic matrix D(k) [17] 
in terms of the dielectric matrix E = 1 + uJI ,  where Il = IIul,uz is an irreducible 
polarization operator [NI,  while U, = u,(q) = 4ire2/q* is the Coulomb interaction of 
electrons: 

q"(q,,q) = 6,,q4ne2Z,2,~/qzS2 - w,* ( q , ) ( I l & - ' ) 9 , , q w n * ( q )  e'(q~'P"-q.PnJ. ( 1 4  
Here g, andg are reciprocal lattice vectors; the n and n' indices label different ions with 
masses MG, charges z, and basis vectors p. in the unit cell; Q is the unit-cell volume and 
w,(q) is the form factor of the ion pseudopotential. If the pseudopotential is non-local, 
then in considering the singularities discussed below connected with electronic states 
having quasi-momentum p close to some 'critical' value pc ,  w(q) should be understood 
as the matrix element (p,lr5/p, + q) with Ipc + q1 = pc = p F ,  where p F  is the Fermi 
momentum [2].  

The anomalies under consideration are related to singularities in the polarization 
operator 1191,,, which obeys the Dyson equation 

Here we use the same four-dimensional notation as in [Z]: p = ( p ,  w,J, k + g, = 
(k + g,, 0); w, = (2n + 1)xTare discrete frequencies of the temperature diagram tech- 
nique [NI: the sum over p means summation over p and w, and projections of the 
electron spin U; while G and r are the electronic Green function and the vertex part 
P S I .  

As noted by Dagens [14] and illustrated in section 3,  the singular contribution n, to 
the matrix Il can be approximately represented as 

Here M ,  and Mi are some non-singular functions of 11, &,(p) is the electron energy with 
quasi-momentump in the ith band and n,(p)  = 0[EF - &,(p)] is the electron occupation 
number. For simplicity, we neglect the temperature smearing of the Fermi distribution 
and consider only the most interesting case of not too high i"< ~ ~ 1 1 ,  while at higher T 
all the singularities connected with the ETT are smoothly smeared [3,6] .  
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Let the ETT be connected with the electronic states in the band with i = n ,  so that E ,  
is E&J, the singularity in N(E) near E~ be determined by the partial contribution " ( E ) ,  

andthesingularpart N ; ( e )  have theformA(*c)1/Z8(+(),wherec = ( e  - ec)/cc,Then 
the non-analytical contribution ELi toequation (36)  at k # Oup to the non-singular factor 
[ q ( p  t k) - ~ ~ ( p ) ] - '  corresponds to replacement of the factor 6 [ e  - E&)] in equation 
(4 )  by (?[(e, - E&)].  After integration over p this yields Dagens' [14] result: E:, - 
q y 2 .  At the same time, if k --j 0, in the diagonal terms of equation (46 ) .  the singularity 
increases up to the square root one: &, = - q y 2 .  Since the second term @(O) 
in the dynamic matrix ( l a )  (at all k )  contains expressions TIris,, x + g  with k = 0, it could 
beinferredfromtheabovethatat allkthereexistsasingularterm inthefrequencies 

In fact, however, after summation overg, andg in equation ( l b ) ,  the most singular 
contributions will be shown below to cancel, and at not small k Dagens' result 
w i  - qy' remainstrue. However, at ksmaller thanacertaink,, inequation ( l a )  nosuch 
cancellation occurs, the expansion over k comprises the q1/' terms, and in the elastic 
constants c,, and in the optic phonon frequencies at the BZ centre, wP.  the singularities 
over q are square root ones [2].  

The boundary values of the wavenumber, k,, at w,hich the transition from the 
dependence w s  - qz2 to ws - q g 2  takes place, can be most easily estimated from 
continuity considerations. At small k ,  the expansion of the dynamic matrix D(k) - w: 
begins from the terms -k2; thus, for the acoustic phonons w:  - c ,k2  - (a  t bq2y)k2 
121. By joining the singular part of this expression with w' - ?$' at k 3 k*, we find 
k, - k,,,q~z. Actually, k, is determined from the condition that the p - p c  values 
significant for the appearance of the singularity in equation (36), namely Ip - pc1 s 
pcqp, should be smaller thank,. This results in precisely the above estimate of k,. 

Let us now discuss the dependence of the ws and k, values on the reduced pseudo- 
potential U - w(g)/eF at small U. Note that for actual metals the part of the U parameter 
in the discussed effects is usually played by the ratio of pseudogaps at the BZ boundary, 
A, to 2+, which is often small even in transition metals. Therefore, the estimates given 
below may be applicable not only to nearly free-electron (NE) metals, though the 
formulae of the ME model from [2 ]  will be used for their derivation. 

Within this model. the ETT corresponds to 'touching' or 'overflow' of the Fermi 
surface (FS) over the BZ face, i.e. formation of a 'neck' or a new cavity of the FS with 
centre at the pointp, = ;fg,, where g, is the corresponding value of the reciprocal lattice 
vector. The effects related to  the ETT are characterized by the ratio of the reduced 
pseudopotential U to the parameter &of the proximity of E~ to the 'unperturbed' energy 

@ k ( q ) .  

E : :  

U = v(&.)/e: LY = (EF - E : ) / € :  E: = p:/zm,. ( 5 )  

Herem,isaneffectivemassatp = pFin theabsenceofinteractionwiththelattice, while 
V(g) is an effective pseudopotential renormalized by the electronelectron interaction 
and given by formula (12b) in [ 2 ] .  The value LY = -U corresponds to the point of the ETT 
related to touching, and CY = U to the overflow of the FS over the BZ face. 
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in (3b) ,  it is convenient to write To estimate the non-analytical contributions 
down the electron energies q ( p )  withpclose top, in the form 

EI ,* (p )  .- E: = E: [p2  + Z 2  7 ( U 2  + 42')'/'] (6)  
where z = ( p  - p , ) p , / p f  is the longitudinal component, while p = ( p  - pc  - zpc)/pc, is 
the transverse component of the reduced quasi-momentum ( p  - p,)/p,, and indices 1 
and 2 correspond to the lower and upper bands. The expansion of &Ap) near 
E,  = E ~ ( P < )  = &:(1  7 U) has the form &2[p2 3 r 2 ( 2 / u  F l)], while the singularities 5" in 
E,@) in equation (36)  are determined by the p - pc region corresponding to the values 
I E .  - ccI s E J ~ .  Therefore, at not small k ,  when the energy denominators 
Ai&, k) = ~ ~ ( p  + k) - ~ , ( p )  in equation (36)  are not small, we have: - 
( u q i ) ' o ,  However, at k+ 0 the NFE splitting of bands 1 and 2 near pc is low, 
Ajn(pc,O) - U, and &(O) - ( & / u ) ' / ~ .  Thus, at k+O the singular contributions 

and Us increase and turn out to be larger by l / u  than those at not small k. Therefore, 
at small U and not small k 3 k, - km8x(uqT)L12, the singulnrities in D(k) in equation 
( l a )  are determined mainly by the second term @(O), i.e. are k-independent and have 
the order D, - (u37$)'/'. 

Using the expressionsfor the rI;, ,g valuesobtained in [ 2 ] ,  these D,contributions can 
be written explicitly. As discussed in [ 2 ] ,  in the lowest order in U ,  the singular con- 
tributionsn'areproportional touandarepresent onlyinthe rI;,g andrILg,, components 
where g = g, = Zp,. By expanding expressions ( 1 )  to first order in IIs, we obtain for the 
singular contribution D, at k > k,: 

(7) 
1 

L ) p '  =_  a,,, C g,gSwn(g)ei2 exp(-ig.p,)[n~,gv*(g) - ~ C ~ . ~ V M I  
M .  B 

where E" is the value of the dielectric function &(q) in the homogeneous Fermi liquid at 
q = 2pF.  Using expressions (U) and (16) from [2] for the values II&g and integrating 
overp, i.e. over p and z, we have (for the considered case of not high T < .sFqr) 

Here b = 32/16, where z is the number of valence electrons per atom [ 2 ] ,  and F((Y /u ,  U) 
has the form 
F(E/u,u)= rue(ru2 - u2){(1 - u*/(u*)~'* -1n[ru+(ru2 - u ~ ) " ~ / u ] } -  ruin U. (9) 

Near the ETT points (Y = &U, expression (9) has a singularity of the form ( q i / u ) ' ! * .  
Figure 2 presents the dependence of the function F/u on x = LY/U at the value U = 0.055 
(corresponding to the model of Li,-,M& alloys, discussed in section 5, at xMg = 0.4) as 
well as the functionf(x) = ( F  + CY In u) /u  and its derivatives. 

In accordance with equation (a), the dependence shown in figure 2 (curve A )  
illustrates the character of variation of the phonon frequencies wk near the ETT. Its form 
agreeswith the general considerationson the 'band tendencies of the structural stability. 
It is known that, as approaches the minimum (maximum) point in A'(&), it results, 
generally speaking, in a gain (loss) in the band energy Eb, in comparing Eb for different 
structures. Correspondingly, one could expect here a certain increase (decrease) of the 
lattice stability, hardening (softening) of the ok. For a qualitative consideration, we 
apply equation (8) to the case of monatomic cubic crystals. Then the coefficient before 
Fin equation (8) is reduced to apositive value proportional to Sagz[  w(g)12 and the sign 
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Figure 2. (A) The function F(x, “)/U from equation (9) at the value of U = 0.055, (B) 
A x )  = (F+ c In U ) / ” ,  (C) df/& and (D) d*f/dr‘. 

of D, - ( w &  coincides with that of F. In the model considered, the point cr = U 
corresponds to the minimum, while the point a = - U corresponds to the maximum in 
N ( E )  [2]. It isclear from figure2 that near cr = U thereindeedoccurs acertain hardening 
of wk(x) with respect to the mean, linear variation, while close to a = - U an analogous 
softening of takes place. Note that at small k < k, these band tendencies of the 
structural stability manifest themselves still more sharply [2]. 

Let us now discuss the general character of the wu dependence on k,  U and q for 
different branchesA of the phononspectrumat the considered (q (  S U < 1. Since w: is 
theeigenvalue of the D(k) matrixinequation (l), it followsfrom the above that w: has 
the following form: 

= wZ.,, + (uq*)3’zfi(k/ks, T / o ) .  (10) 

Here denotes contributions to w& regular at the ETT. while k, = / ~ , , , ~ ~ ( u q ~ ) ~ / ~ .  
So,ifA inequation(10)correspondsto theacousticbranch, theexpansionofthe function 
fi(x, y )  at small x has the form 2 r,xgc$ with cia being regular at small y = q /u .  Thus 
the anomalous contributions c; to the elastic constants have the order ( ~ q ~ ) ’ / ~  relative 
to the regular terms except for the bulk modulus B, in which there is the singular 
contributionBE- (uSqi)’~z;see[2]).F~rtheoptical branchesh,fL(x,y)inequation(lO) 
at x-+ 0 behaves asfi(O,y) - l/y (due to the presence of the mentioned terms pm - 
(uqi) lp  in equation (3)), so that the singular terms have the order w; - ( ~ ~ q ~ ) ’ ’ ~  at 
k < k,. At the same time, at not small k > k, all the fn in equation (10) tend to k- 
independent expressions analytical over q and determined by formulae (7)-(9). 
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Figure 3. The character of the low-frequency dispersion of acoustic phonons (a) and of 
their spectral density gm(w) ( b )  in the case when ep is close to the singular point E. in the 
electronic density of states N ( E ) .  Curves A correspond to the case when the singular part 
N , ( f )  rises at E<: curves B to that when NS(e)  drops near E.. 

Figure 3 shows schematically the dependence (following from equation (10)) of the 
acoustic phonon frequencies w on k at k - k, and the corresponding spectral density of 
phonons, gph(w) (at the increased scale of anomalies). The broken curves in figure 3 
correspond to w(k)  or gph(w) for k > k,. It is clear that the dispersion of w(k)  near k, 
brings about a specific behaviour of the low-frequencyg,,(w), which resembles that in 
the presence of quasi-local vibrations. However, the sharp sensitivity of the considered 
effects to the sign and magnitude of the parameter E~ - E, (e.g. to the composition of an 
alloy) should be a peculiar characteristic of these effects. 

3. Calculations of the polarization operator and singular Contributions to the dynamic 
matrix for the Williams and Weaire model 

To illustrate the above general results, as well as to study the Kohn anomalies in the ETT 
region, in this section we present explicit expressions of the quantities l lk t s , ,k+E and 
the singular contributions to D(k)  for the Williams and Weaire model [E] corresponding 
to the interaction of electrons with only one BZ face. At small U this model exactly 
describes all the phenomena connected with the E=, since in thiscase the contributions 
of different BZ faces are separated and enter into the results additively (21. 

As was discussed in [2], for the most interesting case of small k s k,,u the singular 
contributions ITs are present only in the IIk+E,k+E and llk_g,ktE components in equation 
(2). Using the two-wave approximation for the Green function G and other methods 
and approximations described in [2], after summing over w, in equation (2) and 
redenoting the integration variabIe,p*p + k / 2 ,  we obtain 

n k t g . k t g  = k-h+R11 +g+g-Rlz fh+h-RZ, +g+h-Rzd 
P. 0 

&-g ,ktE  =x uo(RIi-Ru-Rx +R,)/4f+f- 

Here UC, = V(g)/Ez, the functions f, g, h and Ri, are 
P*U 
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z is the same as in equation (6) and the '+' or '-' index of the functions stand for the 
replacement of the p argument with p + k/2 or p - k /2 ;  thus, ft =f(z + q/2), where 
4 = k .p,/pz. etc. The singularities in expressions (11) are, evidently, connected only 
with thenon-analyticityofthe R,functions(l2b), which substantiatesusingtheestimate 
(3) for the singular contributions IF. 

If we go over in equations (11) fromp to the variablesp and z used in equation (6) 
and integrate over p .  the lTktg.X+g values take the form 

V G Vaks and A V Treflou 

=e(-qij)+ e ( q . , ) e ( ~ t ) ~ e ~ l ~ i ) + s ; ~ ~ l ;  -qi'W -e(~$%qiI. 
Here Pi ,g stands for the coefficients of Rij in equations (ll), q L  = k l / p ,  = ( k 2  - 
4'pz)1;2j8p, is the transverse component of k in pc units, while the functions AT(z), 
x i  ( z )  and qii(z) are 

A ? = a - z $ + F  - , fi =(-l)"lf. xi =xji i q: (140) 

x,, =s: -6 -2qz 0 4 b )  P,I = q :  +q?(q2 +4z2 -2f: -2fF - 4 4  +xi .  
In the U = Ocase,inequations(13) wecanput? = Zz,.andintegrationoverzyields 

the known Lindhard expression for n. 
In studying the dependence of the lT,isingularities on cFor n = - 1, it is more 

convenient to consider the derivatives dn"/dff instead of the nij values in equations 
(13): 

(15) 
The expressions (13)-( U) allow one to study the singularities of Il and D(k) in equation 
(1) in an explicit form. 

Let us consider, for example, the intraband term Ill' in equation (15). In this term 
the E m  corresponds to the FS touching the BZ at f f  = - U, and is singular at 
d = - (a + 0 )  > 0: N,(d) = - (2u6)%(6). Let us first discuss the Kohn anomalies in 
ut near the ETT. For the considered term Ill' these anomalies are located on the surface 
in k-space determined by the relation 

fi[(k + d D I =  E I ( P ~  + k / 2 )  = EF (16) 
while the singular contribution to equation (15) arises from the region of small z values. 
It isclear from geometric considerations that the Kohn anomalies in n,, at 6 > Ooccur 
only for not too small q > qo = (a2 - U*)]/' = (2uS)@ Therefore, we assume q to be 
not too small: 0161 s q 2  < U. For these q values the relation (15) for IT,, can be written 
as 

where F& = 1/4, F!g,g = V(g)/4lV(g)l, J = ( J s  - Jr)/2q, ,  the J, term has no Kohn 
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singularities at small y = [&] (pc  + k/2) - E ~ ] / E : ,  and J, is expressed in terms of the first- 
order elliptic integral F(K) [19]: 

Y > O  J, = 2(AZ + 4By)-1/4F(y1/2) (W 

F(K)  = I (1 - K’ sinZ p)-Il2 d p .  (184 

y < O , A  > O  J ,  = 2’/’[A + (A2 + 4Ey)’/Z]”/’F(y-’’2) (18b) 
si2 

0 

Herey = 1[1 + A(A2 + 4By)-’/’] while A = A(q ,  q L )  a n d E  = B(q,  q l )  are 

A = 8(6 - y + 3q4/8u3)/q5u B = 8(6 - y + 3q2/2o)/q:u3. (19) 
In equations (1) and (15)-(19), the Kohn anomaly of conventional form, uiK - 

yln Iy I ,  corresponds to small values of 14Byl <A2, when 

J s +  IA/-’/*[ln(A2/BIyl) + 4In21. (20) 

Js+ (4/By)‘i4F(1/2) =2.6(By)-’14. (21) 

However, if the A value in equation (19) is small, the singularity enhances. Thus, for 
A* Q 4 B y ,  from equation (18a) we have 

which, according to equations (1) and (17) means: aiK - y3/4. Physically, thisenhance- 
ment of the Kohn singularity up to the power 3/4 is connected with the flattening of the 
FS in the anomaly region: one can see that the value A = 0 corresponds to the point of 
vanishing of one of the reciprocal radii of curvature of the surface (16). 

It is also seen from equations (19) and (20) that at small 6 and q the amplitude of a 
conventional logarithmic Kohn anomaly may increase sharply, changing with 6 and 
qasA- l /? -  (u6 + 3q4/8)-’/’. This may correspond qualitatively to the effects of the 
‘giant Kohn anomaly in sound’, observed in a number of metals, Cd, Zn, y-Sn [20], for 
which the proximity of eF to the ETT point is characteristic [ l l ] .  

Let us use the same example to discuss the singularities over 6 (or 7) in l3 and D(k)  
at small q qo = ( 2 ~ 6 ) ’ 1 ~  (i.e. k Q k, in the notation of section 2) .  If we consider, for 
definiteness,onlynottoolargeq,, qqo > q 2  + uq~/2,theninrelation(l7)theexpansion 
of J i n  powers of q/qo and qi/qo has the form 

J = (u/ZqO)[l + (4’ - 0q:/2)/3qa + . . . 1 

rIA’(q) = C,(06)”’ + c*q2(v6)-1/2 + . . . 

(22) 

(23) 

which, according to equation (17), means 

where C ,  and C2 are constants. If, upon substitution of ll into equation (l), the con- 
tribution D, to D(k)  that is singular in 6 had the same order as that in U,, the singularities 
in the elastic constants c,, would have the form c; - (u6)-112 instead of the true one 
c; - (06)l/~ foundin [2]. 

However, actually, at small k values the singularities in D(k) are weaker than those 
in ll because of cancellation of the main terms in the summation overg, andg in equation 
(16). Thus, in the case of small U under discussion, for the singular contribution Os in 
equation (16) we have 

@:w = c [g , (vk+gni+g,k+,  - vI-gnii-g.k+g) 

+ k e ( v k + g n i + g . r + g  + V k - g n i - g . k + g ) l ( k ~  &‘#)Vi+, (24) 
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(for simplicity, the crystal is assumed to be monatomic). If, for the discussed small k 
values, in equation (24) we put V,,, = V,, Vk-* = V-t = V: and use the main approxi- 
mationin theu6 parameterinn, then thecoefficient ofg,,i.e. themain termofequation 
(24), vanishes. Since theexpansioninkoftheexpression (24) begins,evidently,at terms 
of order k’, this results in the above-noted weakening of singularities near the  ET^ in 
D(k)  at small k ,  as compared with n ( k ) .  

Let us now consider in  the same model the problem of singularities near the m in 
powers of frequency averaged over the Bz, f= (a;), e.g. in the zero-point phonon 
energy Ezp - (ak). Let us denotef: the non-analytic part offat 6 > 0, andf;  at 6 < 0. 
At 6 5 0 all the at have a non-analytic part a‘ - (u6)?rQ at k > k, = k,,,(u6)‘/2, while 
atk < k , ,aS  - c;k - k(u6)’i’. Inintegrationoverthesz,thecontributionoftheregion 
k < k, is small, andf: = cons tan t (~6)~/~ ,  which agrees with the result given by Dagens 
[14]. However, for 6 < Oour conclusion disagrees with that of Dagens. He assumed that 
the singular contributions to (a; )  and to the polarization operator (U) are proportional 
to each other: 

V G Vaks and A V Trefilou 

(a;). -f6 = const(lT,). (25) 

Calculating the contribution to @I,) corresponding to the Kohn anomalies, he obtained 
(in our notation) in,) = ~onst(-6)~;‘6’(-6), whence he concluded that f; = 
const(-d)@, i.e. f; - 16y/~, too. 

The direct calculation of the (n:’) value according to equation (15) agrees with 
Dagens’ above result for (nJ. However, the main assumption (25) in the case under 
consideration,p, = g / 2 ,  is not fulfilled. Thecalculationsshow that the discussed singular 
contribution of the Kohn anomalies to (n,) arises from the region of small 
(k/kmaX, q, qL) s in which the contribution of n, to D(k)  was mentioned to be 
multiplied by p, which corresponds to the contribution as - kn, in the frequency. 
Thus, in calculatingf, = (a;)$,  the quantity kn,, rather than n,, should be integrated 
over the BZ, which results in the appearance of additional factors )6)’/’ or ]u6I1/’ in the 
result. Therefore. the singular termf; turns out to be proportional to 62u7/2 or to hZu4, 
being much less thanf: - ( ~ 6 ) ) ) ~  in both powers 6 and U. 

Thus. if the m corresponds to the BZ symmetry point pc = g / 2 ,  the singularities at 
the Errinf = (a;) are apparently ‘one-sided‘, as in all the other physical characteristics 
of a crystal [2,3,6]: f, =f: = const(uq,)’/’. If pc # g / 2 ,  the estimate of the f; con- 
tribution generally speaking needs separate consideration. However, our results allow 
onetoassumethat.evenifthetermf; - 1q~3;’ispresentinthiscase,itwillbemuchless 
than the ‘normal’f: one in the U parameter. 

4. Singularities near t h e m  in thermodynamic properties and anharmonic eflects 

The peculiarities of the phonon spectra discussed in sections 2 and 3 must give rise to 
anomalies in the temperature andconcentration dependences of different characteristics 
ofthecrystal. Letusfirst considerthespecific heat C(T). Theearlydispersionofphonons 
at k - k, = k,,,,(uq,)’~mentionedinsection2causes the conventional low-temperature 
expressionC= yT+ (uT3toholdtrueonlyatverylowT* T, = TD(uqJ’/2 -=3 TD(where 
T,isthe Debyetemperature), whileat T - T,anomaliesin theC(T) dependencesimilar 
to those observed in the case of quasi-local impurity levels will arise. So, the following 
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limiting dependences hold for the phonon contribution Cph(T) to the specific heat (per 
atom): 

T <  T, Cph = A,,T’ + Ao(uqt)k’2T3 (264 

T s < T < T ~  Cph=A,rT3+A1(~qL)3RT (266) 

T D < T  Cph = 3 - [A2r - A , ( U ~ ~ ) ’ ’ ~ ] T ~ .  (264 

Here the coefficients A,,, Alr > 0 correspond to the regular contribution L ~ L , ~ ~  to 
equation (lo), while the constants Ai are positive (negative) if the singular part NJE) 
rises (drops) when E approaches E,, as occurs in the NFE model of sections 2 and 3 at 

Let us discuss the anomalies in the thermal expansion coefficients fit and the 
temperature derivatives of the elastic constants n$ = dc,,/dT. The quantities 
pi = du,/dT(where U, is a uniform spontaneous strain) are related to the generalized 
pressuresp, (the derivatives over U, of the free energy density FJ as 

U <  -U (CY > U). 

p ,  = (c-’)? dpj/dT= + Byh 
i (27) 

pi  = - aF/au, = - a(F: + Fph)/aui. 
Here c-’ is the ‘compliance’ matrix (the inverse of the elastic constant matrix) while 

FE and Fph are the contributions of electronic excitations and phonons to F (see e.g. 
[ll]). The electroniccontributions p: werediscussedearlier [2,3,11]. Near the ~ n t h e y  
increase as q ;1/2, but their absolute values are usually small and they are noticeable on$ 
at lowest T <  (T&/sF)’I2. Below we shall consider only the phonon contribution pp , 
omitting the ‘ph’ superscript for brevity: f i ,  = Byh. 

The elastic constant czi can be written as a sum of the c$ term corresponding to the 
regular crystal at T = 0 without allowing for phonons, the phonon contribution cih and 
the ‘quasi-harmonic’ term c:b describing the variation of cP, due to thermal expansion of 
the crystal [21]: 

c j j (Q ,  T) = c&(Qa) + c ~ ~ ( Q ~ ,  T) + cZh(Q~, T )  

cgh = a2Fp,/aujauj (286) 

Here Q is the atomic volume, Qo is its value at T = 0, and we neglect the contribution 
of electronic excitations, c;* - c$(T/E~)’, as well as higher-order anharmonic con- 
tributions. 

Following [21], we can express the derivatives of Fph over ui in terms of those of the 
dynamic matrix, Dj = aD/aui and D, = a2D/au,aUi: 

c;’’ = - x p k a c & / a p k  = - Epk(c-~)k,ac$/au,.  
k k 

Herenw = [exp(hw,/T) - 11-’istheBosefunctionand Dlfi denotesthematrixelement 
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bemeen phonon states with polarization vectors eu and q,; thus 0I.P = ( e u ,  Diek,). 
In estimating singular terms in equations (27)-(29), consider that differentiation of 

the small value q = +/a, - 1 over uc converts it enerally speaking into a not small one 
q / a u i .  It transforms the qni li2 factor into q"-l&q/Jui, i.e. enhances the singularity. 
Thus, in estimating the most singular contributions in equations (29),  the frequencies 
okl may be replaced with the regular terms from equation (lo), Di and D, may be 
understood as derivatives only of the non-analytical term D, in equations (8) and (lo), 
and in equation (296) one can retain only the most singular first term with D;'. As in 
equations (26). the form of the singular contributions 6;  and z:, will be different for 
different T: 
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(304  

( 3 0 ~ )  

= A i  ;'nT3 x?. = BYq;3,oT3 07- 'I 0 - T G  T,  

T ,  Q T Q  To p: =A;q\I2T x$ =Bilq;l/2T 1 -  (306) 

To find the total /3, or xi,, one should add the regular contributions pi or n; (of the 
form T3A\, or T'B.' at T G  TD and Ai, or Bij at T D  9 T) to expressions (30). 

If the reduced pseudopotential U is small (kin the cases treated in sections 2 and 3), 
in estimating derivatives D, and Dc in equations (29) one should distinguish between the 
cases of bulk strain u1 = AQ/B and shear strain U, # U ,  [2]. In the zero approximation 
over U the parameter q@' = pE/pf - 1 does not change under uniform compression. 
Therefore, the non-zerocontribution to aq/au, arises onlyfrom the terms with aulau,,  
so that aq/au, is first order in U. At the same time, the derivatives of q with respect to 
the shear strain us are not small: aq(0)/aur = - a In $ /Jus  - 1. Therefore, for cubicor 
weakly anisotropic metals, in which thermal expansion corresponds to bulk strain only, 
the coefficients A, ,  A ,, A 2  in equations (29) have orders U'/', di2, respectively. In 
anisotropic metals the anomalies in the spontaneous shear strain may be l / u  times as 
strong as those in the bulk strain. so that pi can even change sign near the ETT [ l l ] .  By 
analogous reasoning, the anomalies in the temperature derivatives of shear constants, 

are generally l / u 2  times as strong as those for the bulk modulus. Thus the values 
E r ' ,  By', BY' in equations (30) are of order u'b, u312, U'", respectively, while for xII = 
dB,,/dT,wehave (BA', BI]. B;') - (uSi2, U',&, u'l2). 

Let us present explicit expressions for the singular contributions /3: and "T; in 
equations (29) for the NFE model considered in sections 2 and 3. At not too low tem- 
peratures T > T,, in the integrals over the BZ (29) only the values k > k, are significant, 
for which the singular part D, of the dynamic matrix is given by equation (8). For the 
case of monatomic cubic crystals, e.g. Bccor FCC, this expression takes the form 

where n, is the multiplicity of the critical vector g = g, in the reciprocal lattice. As has 
been noted above. in finding the singular terms p:  and c$ in equations (29), one can 
understand by D, and D,: the derivatives of only the non-analytical term D, (31), while in 
equation (29b) only the first term with D;' may be retained. Then the valuesp: and c; 
in equations (29)  turn out to be proportional to the mean square of the atomic thermal 
displacements along each of the axes, k2). and for the 6: and n; values we have 

I 1'2 ,!. = B6q-1/2, TD 4 T 8: = A Z V L  ' I  2 = 

L@ = S , , ( ~ ~ / ~ M ) , I , E P U ~ F ( ( U ,  U) (31) 
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In the case of non-cubic metals, the product (xz)gz in equations (32) is replaced by 
an analogous expression corresponding to the lattice symmetry. Thus, for uniaxial, e.g. 
HCP, crystals this expression has the form (x i )g i  + (x:)g:, where the subscripts 11 and 1. 
correspond to directions parallel and transverse to the main axis. The (x’)  values vary 
smoothly with alloy composition and can be estimated, for example, using the Debye 
model. 

Inestimatingn; weconsidered aboveonly thephononcontribution (29b) inequation 
(280). One can easily see that allowing for the quasi-harmonic term n;,qh does not 
change this estimate. At T < T, the term nb,qh is q y 2  times smaller than while at 
T >  T, both terms have the same q dependence. So, at small U in cubic or weakly 
anisotropic crystals the derivatives of shear constants, are U times smaller than 

Let us discuss the relations (30). First, we see that ,Bi(T) and n,(T),  as well as the 
specific heat C(T) ,  display a characteristic change in their temperature dependence at 
T - T, - TD(uqi)’/2. In pi and, in particular, in nd the singularities near the ETT are 
much stronger than those in C(T).  We also see that, unlike the majority of anomalies at 
the ETT discussed earlier, the singularities in n,, (in particular, for the derivatives of the 
shear moduli, nsso) should also be large at not small T ,  changing with q in the same way 
as, for example, the low-temperature thennopower coefficient a(q) - q;’/2 [6 ] .  

In discussing the temperature derivatives of the phonon frequencies, dw/dT, we 
shall consider for simplicity only those for optical phonons with k = 0 (in non- 
monatomic, e.g. HCP, crystal cells). The atomic displacements in these phonon modes 
correspond to the uniform ‘internal’ strain U , ,  analogous to the acoustic strain U,, and 
within the harmonic approximation their frequencies w p  (similarly to the elastic 
constants cii) can be found by differentiating the energy E (per atom) over up.  Thus, 
for the HCP crystal with identical atoms, the frequencies (u, and w, of homogeneous 
vibration of sublattices along and transverse to the hexagonal axis can be found from 

nk’.ph. 

[22]: 

Mu: = ( J 2 E / a u f ) n  Mu: = (a2E/Ju: )n .  (33) 

The analogy between the Mu: and cd values is also retained in considering the 
anharmonic contributions. Thus it is clear from the expression for the anharmonic 
shifts of the phonon frequencies Am, and for the free energy F(up, T )  (given, e.g. by 
equations (35.2), (35.4) and (34.1) in 1231) that the four-phonon contribution to Aw, 
(being, as mentioned, the most singular one over the parameter q )  is given just by 
the first term on the RHS of equation (296) with replacement of the matrix elements 
DiA = (a2D/auiaUj)Ai by 0:; = ( a 2 D / a u t ) M .  Therefore, for the singular con- 
tributions s; to n, = dw,/dT within the temperature intervals in equations (26a),, 
(26b) and (26c), we obtain expressions analogous to those in equations (30): 

= ~ 5 , , ; 3 / 2 ~ 3  n; = BIJ *q*  -112 T n; = B$qi”2. (34) 

If the pseudopotential U is small, the BY dependence on U is generally speaking 
the same as that for the Bf’ values in equations (30) corresponding to the bulk 
modulus (Bb‘, Bf, Bf) - (u5P, u7lz, U’/’). This is because the derivatives of the par- 
ameter q over the internal strain up ,  as well as its volume derivatives a q / J u I ,  are 
generally proportional to U [2]. 

Using expression (S), it is possible to obtain explicit relations (analogous to 
equation (32b)) for n; within the NFE model described in sections 2 and 3 .  Thus, for 
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the HCP crystal with identical atoms, at T >  T,, by analogy with equations (326) and 
(33), we obtain 

V C Vaks and A V Trefilov 

where y = ./a is the tetragonality parameter. Equations (34) and (35) show that near 
the ETT the high-temperature derivatives np = dw,/dT rise as qZ1/*, as also do ng = 
dc,]/dT. However, at small v the anomalies in np are u2 times smaller than those in 
the shear constant derivatives. 

The relations (34) hold for the phonons with small k < ks. For phonons with large 
k > k,, by analogy with the results of sections 2 and 3, one could expect weakening 
of anomalies over q. Thus, for T > T, and k > k,, the estimate of the quasi-harmonic 
non-analytical contribution to n, = dwkl/dTyields nh,qh - fll/’. Therefore, 
one should expect the strongest anomalies in the anharmonic characteristics for the 
phonons with small k values. 

5. Model calculations for LiMg and Cd-Mg alloys 

In this section we illustrate the scale and character of the discussed anomalies in the 
anharmonic effects by model calculations for disordered Li-Mg and Cd-Mg alloys. 
With changing concentration x in these alloys, ETT apparently takes place: the anom- 
alies assigned to the ETT were observed in the BCC Li,-,Mg, alloys at x, = 0.19 [7, 121 
and in the HCP Cd, -xM& alloys at xC1 = 0.06 and xd = 0.12 [9]. Since both alloys consist 
of metals with a relatively weak electron-ion interaction, they can be treated as model 
systems for studying the SDS effects in NFE alloys. Earlier, model calculations for the 
Li-Mg alloys were used in estimating the SDS anomalies in kinetic [6] and elastic [2] 
characteristics. Here we apply the same model to estimate the SDS effects in the high- 
temperature values of pi(T), z,,(T) and n,(T). In addition, we shall discuss some 
experimental data on microhardness and hardness in the Li-Mg and Cd-Mg alloys, 
which apparently point to noticeable manifestations of the SDS effects in these quanti- 
ties, too. 

We shall estimate Pf, n; and n; by relations (32) and (35) using the NFE alloy 
model and approximations described in [2]. Within this model all the basic parameters 
of the A,_,B, alloy, i.e. the valence z (x) ,  the atomic volume Q ( x ) ,  the effective 
pseudopotential w,(x) ,  the Debye temperature T&), the non-singular contributions 
to the elastic constants cii(x), etc, are described in the simplest mean crystal approxi- 
mation (MCA): z (x)  = z,(l - x) + z+, etc. The pseudopotentials w(q) of pure metals 
are taken in the Animalu-Heine form (equation (46) in [Z]). The parameters w(q) 
and v(g)  for Li and Mg are given in 121; for Cd they were estimated similarly and are 
ro = 1.575 au, U = 3.48, qo = 2pF = 1.481 au, while the value A = rgo/eo in equation 
(12b) of [2] for Cd was put equal to A ,  = 1.25 to bring into coincidence the position 
of the ETT in the Cdl-,Mg, alloy, corresponding to FS overflow over the BZ face at 
point L, with the observed xc2 = 0.12 [9,11]. To illustrate the sensitivity of the results 
to the type and anisotropy of the crystalline structure, the calculations were carried 
out for the BCC, FCC and HCP Li-Mg and HCP Cd-Mg alloys. For the c/u = y parameter 
in the pure HCP metals we use the experimental values (yu = 1.633, yMs =1.623, ya = 
1.886) while for the alloys y(x) was found in the MCA. The ( x f )  values in equations 
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Figure 4. High-temperature values of the non-analytical contributions n; = (dB,JdT), 
for the Li,.,Mg, alloy model described in section 5.  The curves correspond to the BCC 
(-), FCC (-. -) or HCP (- - -) structures. 

(32) and (35) were calculated in the Debye model (neglecting their anisotropy for the 
HCP crystals). For definiteness, we present the results only for the high temperatures 
T >  To, when (xz) is proportional to T ,  and in the Debye model (xz) = 3h2T/MTL. 
For To, the experimental values 336, 387 and 212 K were used in pure Li, Mg and 
Cd, respectively. 

The calculation results are presented in figures 4-7. In figures 4 and 5, the ETT 
points for the Li-Mg alloys correspond to successive touchmgs and ovedows of the 
FS at the following points of the Bz (and structures): N (BCC); L and X (FCC); M, A‘ 
and L (HCP). In these figures we present the temperature derivatives zij = dB,i/dT of 
only the shear constants, Bez = cu and B3) = (cII - qz)/2. In the derivative of the bulk 
modulus, dB/dT, the anomalies at the ETT, as noted, are U* times weaker and are 
almost imperceptible in the figures (as well as for the aB/laQ values in figure 6 in [Z]). 

Let us discuss the results for zii(x). In accordance with equations (30) and (326), 
the singular part z; close to the x, points increases as x; lIz ,  where xI = ( x  - 
x@[ 2 (x - x,)] ,  in the model under consideration (which neglects the concentration 
and temperature smearing of the err), and can be either negative or positive. The 
latter case may be of particular interest in connection with the known problem of the 
development of elinvar alloys, i.e. those with small zii = dEii/dT values. As known, 
in the absence of special reasons, the zlj values are negative, in compliance with the 
lattice ‘softening’ with rising T; see, e.g. [21], Therefore, if near the E= the singular 
contribution z u ( x )  > 0, by changing the concentration x near x, one can generally 
speaking achieve its compensation with the regular contribution xrg < 0, obtaining 
for the total xi, = nb + z f g  any values, e.g. zii = 0. Note also that then this must hold 
within the whole high-temperature range of T >  To and not only in the narrow 
temperature interval as often happens in conventional magnetic elinvar alloys. There- 
fore, investigations of the described ‘band’ mechanism of elinvar behaviour may be 
quite interesting. 
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Figure 5. The same as figure 4 but lor aL = (dB,/dT),, 

Figure 6. High-temperature values of the non-anslylical contributions n; for the Cd,.,Mg, 
alloy model: (A) nn = ddJdT),, (B) n: = [d&/dT)%. Here a,, = w,/w,, wp = (4nz:e2/ 
h4Q)'!z and the frequencies w, or 0. correspond to vibrations ol atoms with k = 0 along 
or transverse to the hexagonal axis c. 

It is also seen in figures 4 and 5 that the considered anomalies in x,,(x) are 
characterized by a considerable asymmetry of the concentration dependence with 
respect to the E n  point x,. This seems to agree with the experimental data on the 
x&) anomalies in the Nb-MO alloys shown in figure 1. 

Figure 6 presents the calculated derivatives xa = dw,/dTand xc = dw,/dTfor the 
HCP Cd-Mg alloys. The frequency values are given in units of the ion plasma frequency 
wp = (4~zZe2/MC2)'/*, in which units the experimental w, and o, values in pure Cd 
are 0.41 and 0.79, respectively. It is seen that the form of the anomalies in xp is the 
same as that in x?,,, though in the considered case of small U they are much less than 
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Figure 7. High-temperature values of the non-analylical contributions to the thermal 
expansion coefficients ,5’, for the Cd,-,M& alloy model: (A) pi = (dlnc/dT),, (B) 
B: =(dlno/dT).. (C)P=Bll+ZBl. 

those in zss,. But since the term, as noted, rises with I: as u’p, at not small o (e.g. 
in transition-metal alloys) the SDS anomalies in dw,/dT may be noticeable. 

In figure I we present the calculated thermal expansion coefficients in anisotropic 
HCP Cd-Mg alloys: the longitudinal PI, = d In c/dT, transverse = d In a/dTand 
volume /3 = + 2PL coefficients. In accordance with the remarks made in [ll] and 
section 4 ,  the singularities in P ( x )  are very weak, while in P i  and 8” they are more 
noticeable and are opposite in sign. Note also that in actual alloys the singularities in 
Pi can be much stronger than those in figure 7, see, e.g. [l, 111. 

Experimental data on q j ( x ) ,  x,(x) and &) values for the Li-Mg and Cd-Mg 
alloys discussed above are not known to us. However, there are some data on related 
characteristics of anharmonicity, namely microhardness and hardness. Let us discuss 
these data. In figure 8 we present data on microhardness H J x )  in the Li-Mg alloys 
at room temperature, taken from [12]. It is clear that If,@) has a distinct anomaly 
near the point of the discussed ETT, xcl = 0.19, as well as in the vicinity of xa = 0.54, 
which could correspond to the second ETT. For comparison, in figure 8 we also present 
the results of our model calculations of shear constants in the Li-Mg alloys taken from 
[Z]. It is seen that the observed If&) and the calculated B33(x) and B&) dependences 
are very similar, differing mainly only by the scale factor H,/B,,, H,/BU - 0.02. Since 
the Hg value characterizes the transition to an inelastic plastic flow in the stress-strain 
curve u(us), while the shear constants correspond to the initial part U, us+ 0 of the 
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Figure 8. (A) Experimental values of microhardness H J x )  in the Li,.,Mg. alloys from 
[IZ]. (B)  The B&) values for the Li,-,Mg. alloy model calculated in 121. (C) The same 
as (B), but for E&). 

same curve, the similarity of the concentration dependences seems to be natural and 
may be treated as a qualitative confirmation of the concepts discussed in [2] and in 
the present paper. 

For the Cd,-xMgx alloys, the hardness H ( x )  was recently measured by S V 
Varyukhin (private communication). Unfortunately, the microstructure and degree 
of homogeneity of the samples were not studied, so that the results are only qualitative. 
However, in the region of both the first and second ET. x = x., and x = x,, distinct 
singularities have been revealed in H ( x ) ,  which correspond to a stepwise increase of 
H ( x )  with x by about 20% and lo%, respectively. These results also seem to confirm 
the importance of the SDS effects in anharmonic properties. 

6. Concluding remarks 

Let us make a remark about the effect of the BZ and ETT smearing in disordered 
alloys on the singularities under consideration. These effects were disregarded above. 
However, experiments on measuring analogous singularities in kinetic coefficients, in 
particular in the low-temperature thermopower a ( x )  (where the singular contributions, 
as in the 3ttJ values, are proportional to ~ 2 ’ 1 2  [6]), have shown that the effects of 
smearing could be small and do not prevent observations of the SDS anomalies. Thus, 
in the Li,-,M& [7] and Ti,-,V, alloys [9], &) near the E= increases by about an 
order of magnitude. Therefore, the SDS anomalies in the ns(x) values in real alloys 
can also be that strong. Apparently, this is confirmed by the data on z&) in the 
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Nb,_,Mo, alloys shown in figure 1. The data given in figure 8 also illustrate not too 
great ‘alloy smearing’ of the SDS anomalies in the plasticity characteristics. 

Let us now summarize the main results of this work. We have studied the singular 
contributions w i  to phonon frequencies wk in the vicinity of the ETT points, and have 
found that at not small k > k ,  - qyz  they have the form of - q y 2 ,  while at k < k, 
the singularities become square root ones, oi - q y 2 .  If the effective pseudopotential 
U is small, then k ,  - ( ~ q ? ) ~ ” ,  and for k > k, we present explicit expressions (8) and 
(9) for the non-analytical corrections D, to the dynamic matrix. The explicit expression 
has been obtained for the polarization operator IIr+sl,k+s in the WilliamFWeaire 
model (or at small U) in the form of one-dimensional integrals (16) convenient for the 
analysis of singularities. We have also shown that the Kohn anomalies in wr near the 
ETT can increase sharply and vary appreciably with changing k or 7). 

The mentioned low-frequency dispersion at k - k, gives rise to peculiarities in the 
temperature and 7) dependences of thermodynamic and anharmonic characteristics, 
the specific heat included, at low 7’- T, - TD(u7)5)1/z. It has also been shown that at 
T > T, the non-analytical contributions to the thermal expansion coefficients pi are 
proportional to q g 2 ,  while in the temperature derivatives of the elastic constants, n.. 

The dependence of all the singular contributions on the magnitude of the pseudo- 
potential U at small U is discussed; for this case explicit expressions (32) and (35) are 
obtained for the singular contributions p’:, ?c; and n;. Illustrative calculations of these 
contributions for the NFE models of the Li-Mg and Cd-Mg alloys have been camed 
out. Experimental data on the concentration dependence of microhardness H J x )  in 
the Li,_,Mg, alloys and hardness H ( x )  in the Cd,_,Mg, alloys have been discussed, 
apparently suggesting a clear manifestation of the SDS effects in the plasticity charac- 
teristics, too. 

and of the phonon frequencies at the BZ centre, n,, they are proportional to q ;  ,A’ . 
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